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Simple Random Walks on Tori
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We consider a Markov chain whose phase space is a d-dimensional torus.
A point x jumps to x+| with probability p(x) and to x&| with probability
1& p(x). For Diophantine | and smooth p we prove that this Markov chain
has an absolutely continuous invariant measure and the distribution of any
point after n steps converges to this measure.

KEY WORDS: Markov chain; homological equation; Levy excursion; stable
law.

1. INTRODUCTION

Consider Markov Chain on the d-dimensional torus Tord where a moving
point jumps from x # Tord to x\| with probabilities p(x) and (1& p(x)),
respectively. Here |=(|1 , |2 ,..., |d ) # Tord is fixed. We shall call such
Markov chains simple random walks on tori. In the one-dimensional case
a point wanders along the unit circle jumping from x to x\|.

We shall impose the following conditions:

1% The point | is Diophantine, i.e. for some positive K, #

inf
m # Z1

|(|, n)&m|�
K

|n| #

where n=(n1 , ..., nd ) # Zd, |n|=�d
i=1 |n i |{0. The shift on Tord by | is

denoted by T, i.e. Tx=x+| (the addition mod 1).

2% Let H r(Tord )=H r be the space of continuous functions on Tord

such that for their Fourier expansions f =�s # Zd fs e2?i(s, x) the series
�s # Zd | fs | } |s| r<�. Then 0<p(x)<1, x # Tord and p # H r for some r>2#.
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We shall prove for this Markov chain that under formulated above
conditions it has a unique invariant measure which is absolutely con-
tinuous with respect to the Lebesgue measure. The density of this measure
? satisfies the equation

?(x)= p(T &1x) ?(T &1x)+(1& p(Tx)) ?(Tx) (1)

Let us show that (1) always has a solution.

Definition. Simple random walk is symmetric if

|
Tor d

ln p(x) dx=|
Tor d

ln(1& p(x)) dx.

Otherwise it is called non-symmetric.
Consider first symmetric case. Here the homological equation

p(x)
1& p(x)

=
h(x)

h(T &1x)
(2)

has a positive solution h # H r&#. Let us check that the function ?0(x)=
h(x)�p(x) satisfies (1). We have

p(T &1x) ?0(T &1x)+(1& p(Tx)) ?0(Tx)

=h(T &1x)+
1& p(Tx)

p(Tx)
} h(Tx)=h(T &1x)+h(x)

But h(T &1x)+h(x)=h(x)�p(x). Indeed, h(x)(1�p(x)&1)=h(T &1x) or

1& p(x)
p(x)

=
h(T &1x)

h(x)

which is our homological equation (2).
In the non-symmetric case we write

p(x)
1& p(x)

=*
h(x)

h(T &1x)
(3)

where ln *=� ln p(x) dx&� ln(1& p(x)) dx and h # H r&#. Assume that
*>1. Consider the equation

*&1r(+)(Tx)&r(+)(x)=
1

h(x)
(4)
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For *{1 it always has a solution since no small denominators arise. We
shall see later that r+(x)>0. Let us show that ?0(x)=r(+)(x) h(x)�p(x)
satisfies (1). We have

r(+)(x) h(x)
p(x)

=r(+)(T &1x) h(T &1x)+
(1& p(Tx)) r+(Tx) h(Tx)

p(Tx)

Using (3) we can write

r(+)(x)
p(x)

=r(+)(T &1x) }
h(T &1x)

h(x)
+*&1r+(Tx)

The right-hand side can be rewritten using (4) as

r(+)(T &1x) h(T &1x)
h(x)

+*&1r+(Tx)

=\*&1r(+)(x)&
1

h(T &1x)+
h(T &1x)

h(x)
+*&1r(+)(Tx)

=*&1r(+)(x)
h(T &1x)

h(x)
&

1
h(x)

+\ 1
h(x)

+r(+)(x)+
=r(+)(x)\*&1 h(T &1x)

h(x)
+1+

=r(+)(x) \1& p(x)
p(x)

+1+
=

r(+)(x)
p(x)

The case *<1 is considered in the same way by replacing T by T &1.
The probabilistic meaning of the functions h, r(+) will become clear later.

The main result of this paper is the following theorem.

Theorem 1. Under the conditions formulated above the invariant
measure of simple random walk on Tord is unique. Even more, if Pk(T mx)
is the probability that after k steps the moving point is at T mx, |m|�k,
then for k � � the probability measures Pk=[Pk(T mx)] converge weakly
to ?x(x) dx.

This theorem is proven in Sections 2, 3, and 4 for the symmetric case.
In Section 5 we explain the needed changes in the non-symmetric case. In
Sections 6 we formulate some extensions of Theorem 1 and mention several
open problems.
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2. RECURRENCE OF SYMMETRIC RANDOM WALKS

Fix x # Tord and consider simple random walk b=[b(k), k�0] on
Z1 where b(0)=0 and the probabilities to go from m to m\1 are
p(T mx), 1& p(T mx), respectively. We shall show in this section that in the
symmetric case random walk b is recurrent.

Take any segment [k1 , k2], k1<k2 and introduce the probabilities
R(\)

k of random walks b which go out of k and reach k2 , respectively k1 ,
earlier than k1 , respectively k2 . These probabilities satisfy the following set
of recurrent relations and boundary conditions

R (+)
k = p(T }x) R (+)

k+1+(1& p(T }x)) R(+)
k&1 , k1<k<k2 ,

(5)
R (+)

k1
=0, R (+)

k2
=1

R (&)
k = p(T }x) R (&)

k+1+(1& p(T }x)) R(&)
k&1 , k1<k<k2 ,

(6)
R (&)

k1
=1, R (&)

k2
=0

To construct needed solutions we have to find two linearly inde-
pendent solutions. One is trivial: R#1. Let us check that the other one is
given by the formulas

Rk1
=0, Rk= :

k

i=k1+1

h(T ix), k>k1

We must check that for k>k1

Rk= p(T kx) Rk+1+(1& p(T }x) Rk&1

which in our case is reduced to

0= p(T kx) h(T k+1x)&(1& p(T kx)) h(T kx)

But this is equivalent to (2). Now it is easy to see that

R (+)
k =

�k
i=k1+1 h(T ix)

�k1<i�k2
h(T ix)

, k>k1

and

R (&)
k =

�k2&1
i=k h(T ix)

�k1�i<k2
h(T ix)

are needed solutions of (2), (3). Take k=0, k2=1. We immediately see
that limk1 � &� R (+)

0 =1. In the same way for k1=&1 the limit
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limk2 � � R (&)
0 =1. This shows that random walk b with probability 1

returns to the origin and infinitely many times, i.e. random walk b is
recurrent.

3. LEVY EXCURSIONS AND THEIR DISTRIBUTIONS

Consider the probabilities p (+)
2n (x) of random walks b such that b(0)=

0, b(k)>0 for 1�k<2n, b(2n)=0. In view of recurrence �n�1 p (+)
2n (x)=

p(x). We shall use generating functions .(+)(%, x)=�n�1 %2np (+)
2n (x),

|%|�1. We have

p (+)
2 (x)= p(x)(1& p(Tx)),

p (+)
2n (x)= p(x) :

s�1

:
n1+n2+ } } } ns=n&1

p (+)
2n1

(Tx) p (+)
2n2

(Tx) } } } }

} p (+)
2ns

(Tx)(1& p(Tx)), n>1

Multiplying both sides by %2n and adding over n we arrive at the equation
(see also [S2])

.(+)(%; x)= p(x)(1& p(Tx)) %2 \1+ :
k�1

(.(+)(%; Tx))k+
=

p(x)(1& p(Tx)) %2

1&.(+)(%; Tx)
(7)

Put %1=- 1&%2, �(+)(%1 ; x)=h(x)(1&.(+)(%; x)�p(x)). We have from
(7) the following equation for �(+)(%1 ; x)

�(+)(%1 ; x)=
%2

1(x)+�(+)(%1 ; Tx)

1+
�(+)(%1 ; Tx)

h(x)

which we rewrite in the form

�(+)(%1 ; x)=h(x)&(1&%2
1) h(x) \1&

�(+)(%1 ; Tx)
h(x)

}
1

1+
�(+)(%1 ; Tx)

h(x) +
=%2

1h(x)+(1&%2
1)

1
1

h(x)
+

1
�(+)(%1 ; Tx)

(8)
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Introduce the one-dimensional map Qx(z)=%2
1h(x)+(1&%2

1) 1�(1�h(x)+
1�z), z�0. The dependence on %1 is not mentioned explicitly. From (8) for
any k>0

�(+)(%1 ; x)=Qx(�(+)(%1 ; Tx))=Qx b QTx b } } } b QT }x(�(+)(%1 ; T }+1x))

The maps Qx have the following properties:

1% Any Qx is a contraction:

|Qx(z$)&Qx(z")|=(1&%2
1) _

1
1

h(x)
+

1
z$

&
1

1
h(x)

+
1
z"&

=(1&%2
1)

z"&z$

\1+
z$

h(x)+\1+
z"

h(x)+
and the needed statement follows from positivity of z and h.

The property implies, in particular, the uniqueness of solutions of (8)
and (7).

2% There exists a positive constant K1 such that for all sufficiently
small %1

0�Qx(z)�K1%1 if 0�z�K1 %1

Indeed, put H=maxx h(x), H1=min h(x). We have

Qx(z)=%2
1h(x)+(1&%2

1)
z

1+
z

h(x)

=%2
1h(x)+(1&%2

1) \z&

z2

h(x)

1+
z

h(x)+
�%2

1H+K1%1&
(1&%2

1) K 2
1%2

1

H1+K1%1

�K1 %1

provided that K1 is large enough.
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Using 1% and 2% we can write �(+)(%1 ; x) as an infinite fraction

�(+)(%1 ; x)=%2
1(x)+(1&%2

1)
1

1
h(x)

+
1

%2
1h(Tx)+(1&%2

1)
1
1

h(Tx)

+ } } }

which should be understood as the limit of finite fractions. It can be rewritten
as a continued fraction consisting of the infinite number of fragments

(1&%2
1)k %2

1h(T }x)+
1
1

(1&%2
1)}+1 h(T }x)

3% If h # H r&# then �(+)(%1 ; x) # C r&2#(Tord ) as a function of x.
Indeed, if h # H r&# then h # C r&#(Tord ) and the statement follows by

direct differentiation of the infinite fraction giving �(+)(%1 ; x).

4% Let | be Diophantine. Then �(+)(%1 ; x) has the following represen-
tation

�(+)(%1 ; x)=a(+)%1+%2
1 f (+)(%1 ; x)

where a(+) is a constant, a(+)�K1 (see 2%), f (+) # C r&#(Tord ).

Proof. We can write �(+)(%1 ; x)=%1a(+)+%1F (+)(%1 ; x) where

%1 a(+)=|
Tor d

�(+)(%1 ; x) dx�%1K1

in view of 2%, |F(%1 ; x)|�2K1 . Rewrite (8) as follows

F (+)(%1 ; x)&F (+)(%1 ; Tx)

=%1h(x)&%2
1a(+)&%2

1F (+)(%1 ; Tx)

=

%1(1&%2
1)(a(+)+F (+)(%1 ; Tx))

h(x)

1+
%1a(+)+%1 F (+)(%1 ; Tx)

h(x)

=%1 G(+)(%1 ; x) (9)

where G(+)(%1 ; x) # C r&#(Tord ). Since | is Diophantine the solution of (9)
can be written as F (+)(%1 ; x)=%1 f (+)(%1 ; x), f (+)(%1 ; x) # C r&#(Tord ).
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Return back to �(+)(%; x). Our previous analysis gives the following
representation for �(+):

.(+)(%; x)= p(x) \1&
�(+)(- 1&%2; x)

h(x) +
= p(x) \1&

a(+)
- 1&%2

h(x)
+(1&%2) f (+) \- 1&%2; x++ (10)

The Tauberian theorem for generating functions (see [F]) implies

p (+)
2n (x)=

p(x)
const

1
n3�2 \1+O \1

n+ +
In other words, the probabilities p (+)

2n (x) decay in the same way as the
similar probabilities for the usual symmetric simple random walk.

The asymptotics of probabilities p(&)
2n (x) of such b that b(1)=&1,

b(k)<0 for 1�k�2n, b(2n)=0 is investigated in the same way. For the
corresponding generating function .(&)(%; x) we can write

.(&)(%; x)=(1& p(x)) \1&
a (&)

- 1&%2

h(x)
+(1&%2) f (&)(- 1&%2; x)+

(11)

For the generating function of the moment of the first return to the origin
.(%; x)=.(+)(%; x)+.(&)(%; x) we have

.(%; x)=1&
a - 1&%2

h(x)
+(1&%2) f (- 1&%2; x) (12)

where a=a(+)p(x)+a (&)(1& p(x)), f (- 1&%2; x)= f (+)(- 1&%2; x) p(x)
+ f (&)(- 1&%2; x)(1& p(x)).

4. PROOF OF THEOREM 1 IN THE SYMMETRIC CASE

Return back to our random walk on Tord. After k steps the moving
point can be in any point T mx, |m|�k and the probability to be at T mx
is the probability Pk(m) that b(k)=m. We shall study the asymptotics of
P}(m) as k � �, m � � so that m2�k tends to a constant z{0. Assume for
definiteness that z>0. Introduce the following random moments Ti, k(b)=
max[n | b(n)=i, n�k], i=0, 1, ..., m. It is clear that b(T0, k(b))=0,
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b(n)>0 for n>T0, k(b). The difference Ti+1, k(b)&Ti, k(b)={ i+1 consists
of several positive excursions starting at i and of the last step from i to
i+1. Let &i�0 be the number of these excursions, !i1 , ..., !i&1

are their
lengths. If &i=0 then the particle jumps from i to i+1 and after that does
not return to i before k. We can write (see [S2])

Pk(m)= :
&0, &1, ..., &m

�
�
m

i=1
(2k1

(i)+ } } } +2kvi
(i))=k&m

p(x) `
&0

s=1

p2ks
(0)(x)

} `
m&1

i=1
_p(T ix) } `

&i

i=1

p (+)

2ki
(i)(T ix)& (13)

Introduce the generating function ,(%; m)=� Pk(m) %k, |%|<1. We have
from (13)

,(%; m)=( p(T mx) %)&1 p(x) %
1&.(%; x)

} `
m

i=1

( p(T ix) %)

} :
&1 ,..., &m , &i�0

`
m

i=1

.(+)(%; T ix)&i

=( p(T mx) %)&1 %m %p(x)
1&.(%; x)

`
m

i=1

( p(T ix))
1& p(T ix)

} `
m

i=1

(1& p(T ix))
1&.(+)(%; tix)

(14)

Now we use again the symmetry of our random walk (see Section 1), which
yields

`
m

i=1

p(T ix)
1& p(T ix)

=
h(T mx)

h(x)

Each of the functions 1& p(T ix)�1&.(+)(%; tix) is the generating
function of the distribution of �&i

j=1 !ij=!i belonging to the domain of
attraction of the stable one-sided law with exponent := 1

2 (see [GK] and
[F]). This follows easily from the results in Section 3. Therefore the dis-
tribution of the normed sum 1�m2 �m

i=1 `i=` converges to this law. One
can see this also from the expression for the characteristics function of `
equal to

703Simple Random Walks on Tori



f (t)=Eeit`=Ee i t�m2 } �m
i=1 `i

= `
m

i=1

1& p(T ix)
1&.(+)(ei t�m2; T ix)

= `
m

i=1

1

1+
p(T ix) a(+)

- 2 - it (1+O(1�m2))
(1& p(T ix)) h(T ix) } m

_exp {it
1
m

:
m

i=1

p(T ix) a(+)
- 2

(1& p(T ix)) h(T ix)
} (1+o(1))=

The average 1�m �m
i=1 p(T ix) a(+)

- 2�(1& p(T ix)) h(T ix)=a(+)
- 21�m

�m
i=1 1�h(T i&1x) in view of (2) converges for every x and m � � to

_0=a(+)
- 2 � dx�h(x). Thus f (t) converges to exp [- it_0] which is the

characteristic function of the above-mentioned law.
In (14) we have also the factor 1�1&.(%; x)=��

n=0 .n(%; x). Our
arguments below imply easily the ``arcsin''-law (see [F]) for random walk
b but we shall not discuss this in detail. Each .n(%; x) is the generating
function for the sum of n independent identically distributed random
variables whose distribution belongs to the domain of attraction of the
same stable law. Again putting exp [i t�m2] we can write using (12)

.n(ei t�m2
; x) `

m

i=1

1& p(T ix)

1&.(+)(ei t�m2
; T ix)

=\1&
a - it
h(x) m+

n

} e- it_0 } (1+o(1))

=e&an - it�h(x) m } e- it_0(1+o(1))

and

:
n�0

.n(ei t�m2
; x) `

m

i=1

1& p(T ix)

1&.(+)(ei t�m2
; T ix)

= :
n�0

e&an - it�h(x) m `
m

i=1

1& p(T ix)

1&.(+)(eit�m2
; T ix)

(1+o(1))

=
mh(x)

a - it
e- it_0(1+o(1)) (15)
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Now we can use the local limit theorem of probability theory (see [GK])
which says that

P { 1
m2 :

m

i=1

`i=z==
g(_&1

1 z) _&1
1

m2 (1+=(m, z))

where g is the standard Gaussian density and =(m, z) tends to zero as
m � � uniformly for all z in any fixed interval [z1 , z2], 0<z1<z2<�. It
is easy to check that (15) implies

P}(m)=
h(T mx)
p(T mx)

} e&m2�2k_1 }
1

- 2?_1

(1+o(1))

for some _1>0 where o(1) is uniformly small in any finite interval of values
of z=m�- k. This implies Theorem 1 in the symmetric case.

5. NON-SYMMETRIC RANDOM WALKS

In the non-symmetric case we begin with the definition of the mean
drift. We use the same systems of equations (5) and (6) and again want to
find two linearly independent solutions. As before, one is Rk #1. We shall
try to find another one in the form Rk=+}r(T kx) for some unknown +
and r. We have for them the equation

+r(Tx)&r(x)=+&1 1& p(x)
p(x)

(+r(x)&r(T &1x)) (16)

Choose +=*&1 (see (3)) so that

+
1& p(x)

p(x)
=

h(T &1x)
h(x)

If p # H r and | is Diophantine, the function h # H r&# and (16) leads to

*&1r(Tx)&r(x)=
1

h(x)
(17)

The equation (17) always has a solution h # H r&# since no small
denominators arise. We can write explicit expressions for R (\)

k :

R (+)
k =

*&kr(T kx)&*&k1r(T k1x)
*&k2r(T k2x)&*&k1r(T k1r(T k1x)

, k�k1 (18$)

R (&)
k =

*&k2r(T k2x)&*&kr(T kx)
*&k2r(T k2x)&*&k1r(T k1r(T k1x)

, k�k2 (18")
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Let *<1. Take k=0, k2=1, k1 � &�. From (18$), (18") it follows
that R(+) � *&1 r(x)�r(Tx)<1. This means that we have a mean drift to
the left. If *>1 a mean drift is to the right.

Consider for definiteness the case *>1. It is easy to see that with
probability 1 the limit limk � � b(k)=�. A positive excursion of length 2n
is a part of b such that b(m)=0, b(2n+m)=0, b(k)>0 for m<k<2n+m.
The probabilities p (+)

2n (x) of the positive excursions of the length 2n satisfy
the same equations as in the symmetric case (see Section 3) and for the
corresponding generating function .(+)(%; x) we have the same equation
(7). However in this case .(+)(1, x)=��

n=1 p (+)
2n (x)= p(x) q(x) where

0<q(x)=*&1 r(Tx)�r(x) is the conditional probability that random walk
b goes out of 1 and eventually comes back to 0. It follows from the last
inequality that r(x)>0.

We shall not switch from % to %1 as we did in Section 3 and shall con-
sider �(+)(%; x)=h(x)(1&.(+)(%; x)�p(x)). It satisfies the equation

�(+)(%; x)=
(1&%2) h(x)+�(+)(%; Tx) *

1+
�(+)(%; Tx) *

h(x)

or

�(+)(%; x)=(1&%2) h(x)+
1

1
h(x)

+
1

�(+)(%; Tx) *

(19)

From this equation it follows that

�(+)(1; x)=
1

1
h(x)

+
1

*h(Tx)
+

1
*2h(T 2x)

+ } } }

and 0<�(+)(1; x)<� since *>1.
The analysis of this equation is quite similar to the symmetric case.

We write �(+)(%; x)=�(+)(1; x)(1+$(%; Tx)) and for $(%; x) we have
from (19)

$(%; x)=
1

1+
�0(Tx) *

h(x)

$(%; Tx)+ } } }
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where dots mean terms of higher order of smallness. This shows that in a
small neighborhood of �(+)(1, x) the mapping Qz(%; z)=(1&%2) h(x)+
%2�1�h(x)+1�z* is a contraction and in some neighborhood U=(1&=,
1+=) the solution �(+)(%; x), % # U of (19) is a real analytic function on U.
It implies in particular that the probabilities p2n(x) decay in this case
exponentially.

Again we study the asymptotic behavior of probabilities P}(m). We
can write the same expression (13) and (14) takes the form

�(%; m)= p(T mx) } %)&1 } %m `
m

i=1

1&.(+)(1; T ix)
1&.(+)(%; T ix)

} `
m

i=1

}
p(T ix)

1&.(+)(1, T ix)
}

%p(x)
1&.(%; x)

We already saw (see above) that .(+)(1, x)= p(x) *&1r(Tx)�r(x) and

1&.(+)(1, x)=1&
p(x) *&1r(Tx)

r(x)

=1&
p(x)(r(x)+h&1(x))

r(x)

=(1& p(x)) \1&
p(x)

1& p(x)
}

1
h(x) r(x)+

=(1& p(x)) } \1&
*

(r(x) h(T &1x)+
=(1& p(x)) \*&1r(x)&

1
h(T &1x)+ }

*
r(x)

=(1& p(x)) r(T &1x) }
*

r(x)

Thus

`
m

i=1

p(T ix)
1&.(+)(1, x)

= `
m

i=1

p(T ix) r(T ix)
(1& p(T ix)) r(T i&1x) &1

= `
m

k=1

h(T ix) r(T ix)
h(T i&1x) r(T i&1x)

=
h(T mx) r(T mx)

h(x) r(x)

The ratio 1&.(+)(1, T ix)�1&.(+)(%; T ix) is a generating function of a
positive random variable with an exponentially decaying distribution. So
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the product %m >m
i=1 1&.(+)(1; T ix)�1&.(+)(%; T ix) has the usual

Gaussian asymptotics and we can write

P}(m)=
h(T mx) r(T mx)

p(T mx)
e&1�2 (m&ak)2�_C(x)(1+=(m, k)) (20)

Here a is the mean drift, _>0 is a constant, C(x) is a number depending
on x, =(m, k) tend to zero as k � � and m remains in O(- k )-neigh-
borhood of a } k. It is clear that (20) implies Theorem 1.

6. SOME GENERALIZATIONS AND OPEN PROBLEMS

The same methods give the existence and uniqueness of stationary
measures for one-dimensional diffusion processes with smooth local charac-
teristics taking place on orbits of Diophantine groups of shifts on Tord.

The main problem considered in this paper is a particular case of the
following more general problem. Suppose that we have a measure-preserv-
ing automorphism T acting on a measure space (M, M, +) and p<1 is
positive a.e.. Consider Markov chain where a point x # M jumps to Tx with
probability p(x) and to T &1x with probability 1& p(x). Problem: does this
Markov chain have an invariant measure equivalent to +. We believe that
in the case of T with strong mixing properties like Anosov transitive dif-
feomorphisms the answer is negative. Probably this case is connected with
random walks in random environments (see [S1]). It would be interesting
to extend the results of this paper to groups Zk, k<d acting on Tord and
to Markov chains where a point can jump from x to T ix, |i |�i0 .
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